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Space-Domain Decoupling of LSE and LSM
Fields In Generalized Planar Guiding
Structures
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Abstract —LSE and LSM fields in generalized planar guiding structures
are shown to be coupled only by means of the edge condition, which can be
fulfilled as the final step in the analysis. This is utilized by applying the
singular integral equation technique to finlines. Modes up to the thirtieth
are thus easily and quickly computed.

I. INTRODUCTION

HE HYBRID NATURE of the electromagnetic field

in generalized planar guiding structures (which consist
of an arbitrary number of dielectric layers with metal strips
being arbitrarily deposited at the interfaces) is the main
source of complexity in the analysis. Knowing the physical
reasons for the coupling between the two parts of the field
would allow one to treat these fields independently, up to
the point where the coupling enters the analysis. In this
respect, both TE and TM fields must be coupled from the
beginning because the air—diclectric or the dielectric—
dielectric interface conditions cannot be satisfied other-
wise. On the other hand, these interface conditions are
independently fulfilled by the LSE and LSM field parts [1],
whereas the fields are just coupled in order to satisfy the
edge condition. This will be derived in the following. (The
edge condition is, e.g., defined in [2].) The LSE and LSM
field parts can then independently be treated in the analy-
sis up to the point at which the edge condition has to be
satisfied. This can, however, be done in a final step, thus
greatly simplifying the analysis.

This kind of decoupling between the LSE and LSM field
parts in some planar guiding structures has already been
utilized in the spectral domain, where the spectral represen-
tations of the field components are related by algebraic
equations [3]-[9]. It has been shown to be very effective
there in reducing the complexity of the analysis. In [3]-[6],
the spectral representations of the hybrid field have been
decoupled into LSE and LSM parts and treated indepen-
dently by using the equivalent transmission-line concept.
They have been coupled in the final step of the analysis
without giving a special reason. In [7]-[9], LSE and LSM
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decoupling has also been utilized. Both field parts have
independently been treated by the Wiener—Hopf tech-
nique. Coupling has been introduced in the final step in
order to eliminate singularities which occurred in the course
of the back-transformation of the LSE and LSM fields into
the hybrid field. A physical reason for the coupling has not
been given.

A possible decoupling between LSE and LSM fields in
the space domain is much more important than in the
spectral domain because the field components are now
related by integral instead of algebraic equations. Dealing
with uncoupled integral equations facilitates the analysis to
a great extent, in particular if structures with more than
one dielectric layer are to be treated.

II. Basic FORMULATION

The generalized planar guiding structure sketched in Fig.
1 shows an arbitrary number of air—dielectric and/or
dielectric—dielectric interfaces which are in parallel to the
direction of wave propagation (taken as z-direction here).
Infinitely thin metal strips are assumed to be deposited at
the interface in the (x = 0)-plane, although the analysis can
easily be extended to the case that there are strips at more
than one interface. LSE and LSM fields independently
satisfy all the interface conditions at the strip-free inter-
faces [1]. Hence, it suffices to consider just the interface
conditions in the (x = 0)-plane.

A. LSE Field

For perfectly conducting strips, the LSE field in regions
1 and 2 can be expressed in terms of scalar potentials ¢
and ¢4 satisfying the Helmholtz equation
Iy | 9!
Ix dy

Here, wave propagation has been described by exp (— jBz),
k2= w4y, and k, is the dielectric constant of region i.
The tangential field components at the interface are calcu-
lated from

—+

+(kk}—B%)=0, i=1,2.

0 h A A
Ey =_w"LOB¢/17 Hy = 8X8y
. oy’ oYr
D= haos O=_ ;p2¥
Ez Jwlg ay > Hz JB Ix (2)

0018-9480 /84 /1200-1626501.00 ©1984 IEEE



OMAR AND SCHUNEMANN: SPACE-DOMAIN COUPLING OF LSE AND LSM FIELDS

y
3 1 2 4
£'=l(3 Er=l(1 £r=l(2 Er=l(4
Fig. 1. Generalized planar guiding structure.

The interface conditions read
D= @ = D@ =
EV=E®P=E, EVY=E®P-E

HO-H® =17, HP~HV =1, at x=0.

(3)
E,, E, are the tangential electric-field components, and
J,» J, are surface current density components at x = 0.
It is proven from (2) and (3) that

(4)

Hence, the LSE field is completely characterized by the
y-components of the tangential electric field and of the
surface current density at the interface. Moreover, it can
also be shown from (2) and (3) that both the tangential
electric field E,=En,+ En, and the surface current
density Jo=J,n,+ J,n, are solenoidal, i.e.,
V.E, =0, v, =0. (5)
=(d/dy)n,+(3/9z)n, means two-dimensional del-
operator in the y—z-plane, n, and n, are unit vectors in y-
and z-direction, respectlvely

B. LSM Field

The LSM field is similarly expressed by scalar potentials
¢¢ and 5 satisfying (1) with superscript ‘h’ replaced by
e’. The tangential field components can be derived from

i 1 324/18 1 e

B0 oy ek
(z)=:._l'§% )= Yy

L juco (6)

with interface conditions given by (3). It can now be
derived from (6) and (3) that
dE, 4,
E,~ dy T dy (7
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Fig, 2. Coordinates of (a) the 0° edge and (b) the 90° edge.

so that the LSM field is completely characterized by the
z-components of E, and J. Furthermore, both E, and J,
show zero curl

V,XE =0, v,xJ=0.

(8)

C. Edge Condition

It will now be shown that the edge condition [2] estab-
lishes a coupling between the LSE and LSM field parts. It
states that both E, and J, are singular at the edges of the
metal strips, whe;eas E, and J, behave regularly, viz., they
are vanishing here. For the LSE field, the z-components
E! and J are both proportional to the y-derivative of the
y-components E* and J (4). E} cannot behave regularly
at the edges if E; h is >1ngular here because the derivative of
a function shc»ws a stronger singularity than the function
itself. A similar conclusion can be drawn for J§ of the LSM
field. The edge condition can only be satisfied by a linear
combination of LSE and LSM fields according to

E,=E/+E}, J=Je+ J" (9)
The individual components in (9) must show the following
behavior at the edges:

1) Eyh and J? are regular with regular y-derivative, and
2) Ef and J) are regular with singular y-derivative.
Hence, it can be concluded that the LSE field is responsi-
ble for the edge singularity of J,, while the LSM field

creates that of E .

The validity of this discussion is not restricted to the
idealized case of infinitely thin strips. It can be applied
equally when the finite thickness is taken into account
because both the 0° edge and the 90° edge have a similar
effect on the field components with respect to singularity,
in both cases, E, and J, behave singularly, whereas E,
and J, are regular. Referring to Fig. 2, one has at x = x for
y=s

L)~ 1y =572
[}
A 0° edge

(

(Ez., 1) ~1y=sl|

(E,, ) ~1y—s""? .

(E.. ) ~1y— s 90° edge. (10)
z» Yy

A closely related problem is that of an E-plane step in a
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Fig. 3. Generalized unilateral finline.

rectangular waveguide which cannot support a purely TE
field if it is excited by the dominant mode. The only reason
for this is that the edge condition would then be violated.

ITI. APPLICATION TO SINGULAR INTEGRAL
EQUATION TECHNIQUE

One of the most powerful space-domain methods is the
singular integral equation technique which has been used
in [10]-[12] for solving a variety of waveguide problems. It
has also been applied to the analysis of microstrip lines
{13], [14]. Using this technique for the analysis of gener-
alized planar structures has the same advantages as the
well-known and widely used Galerkin method in the spec-
tral domain— the small order of the matrix characterizing
the problem. For the dominant and the first few high-order
modes of any planar guiding structure, the Galerkin method
in spectral domain is superior over all other methods
because the order of the characteristic matrix may be as
low as four (corresponding to two basis functions for each
component of either strip current or slot electric field) for
still excellent accuracy. For higher order modes up to the
tenth or twentieth, which are needed in the analysis of
discontinuities, two basis functions are not sufficient to
approximate the real field, so that the order of the matrix
must be increased considerably. In this case, the singular
integral equation technique becomes preferable because a
matrix of order seven is quite sufficient for achieving
accurate results up to the thirtieth mode [15].

Utilizing the decoupling between LSE and LSM fields
derived above, the singular integral equation technique
leads to two uncoupled singular integral equations which
can be solved by standard methods [11]. In a subsequent
final step, the coupling is then taken into account in order
to fulfill the edge condition. The procedure is illustrated
here by analyzing the generalized unilateral finline struc-
ture sketched in Fig. 3. Four functions are defined at the
interface x = 0 by

dff
dy

=CthEt’ f2e=czevt"s

flh = Clhnx(vt X Et)’

d h
%~ ctn(v,x2). ()

C¢---C} are constants, n,
x-direction,

means unit vector in the
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Comparing (11) with (5) and (8), it can be seen that ff
and f; represent the LSM part of the field, while f/* and
f3 represent its LSE part. For perfectly conducting walls at
y=0 and y=0», these functions can be expanded into
Fourier series with two sets of unknown coefficients

= X Ajcos(nmy/b),

n=1

= ). P,A¢sin(nmy/b)
n=1

[}
fil=4t+ Y A'cos(nwy/b),

n=1

5= QoWyA"+ i Q, Ay sin(nay/b). (12)
n=1

In (12), A¢(P,) and A"(Q,) are proportional to the Four-
ier expansion coefficients of the LSM and LSE fields
(Green’s functions), respectively.

The construction of the four functions according to (11)
guarantees that 1) P, and @, have unit asymptotic limits
for large n, which is approached exponentially, and that 2)
f£---fF show a (|y—s|"?)- -singularity at the edges,
which is the proper type of singularity for a description by
the singular integral equation technique.

The boundary conditions to be imposed on these func-
tions read

gt

dy =O=f1ha f0r0§y§sl9s2§y§b
. dfy’
f2=0=—@—, fors;<y<s,. (13)

Following standard procedures [12], the field expansion
coefficients 4% and A" can be expressed in terms of two
infinite series g°(y) and g”(y) which are defined by

#0)= ¥ (=R dysin(rmy/b)

[>¢]

g"(y)= X (1-Q,)4;sin(nmy/b).

n=1

(14)

The coefficients in (14) obviously vanish asymptotically, so
that the infinite sums can be truncated behind the first few
terms. Thus, the order of the characteristic matrix will be
low.

As the final step, the two field parts have to be coupled.
One recogmzes from (11) that the vanishing of both dfy/dy
and f} on the fins (see (13)) guarantees only that E, and
E, satisfy Laplace’s equation there. Hence, one of the two
components of E, must be set to zero at the edges [16] in
order to satisfy the boundary condition E,= 0 on the fins.
This establishes a first coupling relation between the LSE
and the LSM field. One can conclude in a similar way that
the vanishing of ff and df)'/dy guarantees only that the
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i
TABLE 1
THE PROPAGATION CONSTANTS OF THE FIRST 20 MODES IN A BILATERAL FINLINE. PARAMETERS: @ = 2b = 3.556 mm, SUBSTRATE
THICKNESS = 0.254 mm, 5, = 0.0, 5, = 0.2 mm, €, = 2.22, AND f == 30 GHz.
mode no.
1 2 3 4 5 6 7 8 9 10
matri
order
5x5 0.665 | -30.769 | -91.672 | -31.763 | -31.889 | -32.004 | -32.467 | -j2.536 | -32.731 | -93.206
7x7 0.658 | -30.772 | -j1.672 | -31.763 | -31.889 | -32.007 | -j2.467 | -32.537 | -32.732 | ~33.206
9 x 9 0.656 | -30.773 | -j1.672 | -j1.763 | -j1.889 | -j2.008 | -j2.467 | -32.538 | -32.732 | -43.206
mode no.
11 12 13 14 15 16 17 18 19 20
matrix
order
5x5 -j3.262 -33.494 ~33.,596 -33.605 -33.687 -33.931 -33.961 -j4.019 ~j34.114 -j4.432
7% 7 -33.262 | -33.494 | -93.596 } -33.605 | -33.687 | ~j3.931 | -33.961 | -ja.019 | -j4.112 | -94.432
9 x 9 -33.262 | -3j3.494 | -33.596 | ~33.605 | -33.687 | -33.931 | -33.961 | -ja.019 | -44.112 | -54.432
TABLE II
MobE CoUPLING COEFFICIENTS FOR THE FIRST 10 MODES.
PARAMETERS As IN TABLE [
N J 1 2 3 4 5 6 7 8 9 10
1 +1.0 =j2.60107> | _jg.20307* | 41,9010 | 24501072 ] _33.601072 | vye.ae1073 | —i2.402072 | —g2.701073 ) wyii1e1072
2 | -j2.20107% | 4j1.0 232290107 | 36.00207" | 4g2.20107% | 51301077 | 453600077 | Sjeiaca07t | -39.80107% | +ja.ac1073
30| -gnare1o™® | Sgna3e107t | 4gte0 3810107 | agniae107? | 3170107t | g9a60107 | cgnare107d | cg1a3e107t | age.ier0
s | -g6.3.107% | _j2.60107% | -37.8°207° | +41.0 +30.221072 | g3se107t | ogmasen0”t | —yza3e107t |-g2.700070 | egil7ero”?
5| ss1.s0107% | wy2.801072 | wg1.202072 | 4y3.901072 | -g1.0 -18.70107% | +43.3107% | -31.0°2072 | -38.5°107% | +j7.6°107¢
6 | -31.20107 | ga.8r107 | —a.60107% | _j3.00007% | —ye.101072 | ed1.0 e35.50107% | -3a.20107% | —ga.90107 | +y3.901077
7 | sg20101077 | eg1a10107? | egeiac1o™ | g1a3ei07 | w3900 | e3a.ae107® | <ji0 -31.841072 | -35.47107 | +y5.9°107¢
8 | -56.00107% | ~g2.50107 | —j7.50107% | -j1.6c107t | 370802072 | -33.30207% | -j1.701072 | wg1l0 «32.5°107% | 433,510
9 | -g6.6010™" | -32.80107% | -38.3-107% | 51701070 | -gs.e0107 | -53ie0107* | -jeee107 | -32.40107% | sg1.0 +35.2°107°
10 .‘12.1-10'3 4»51.0'10'3 +3A.6-1o"’ ’_19.1-10"s +38.8°10° +jz.a~1u‘3 ¢J2.8°10-6 c,,12.a-m'3 ¢J4.3°10'3 -j1.0

surface current density components satisfy Laplace’s equa-
tion in the slot. In order to have J, = 0 here, one of its two
components must be set to zero at the edges. Thus, a
second coupling relation between the partial fields is
established.

It should be noted that these additional coupling rela-
tions do not over-determine the probiem, because a suffi-
cient number of unknown constants has been generated
until now. The number of homogeneous linear equations
always equals the number of unknowns. Propagation con-

stants and field distributions of the various modes have to
be calculated from this system.

IV. NuMEerIicAL REsULTS

To illustrate the fast convergence in the truncation pro-
cedure, the propagation constants of the first 20 modes of
a bilateral finline have been calculated for matrix orders of
five, seven, and nine. (This corresponds to truncating the
infinite series’ in (14) behind the second, third, and fourth
terms, respectively.) The results in Table I show that orders
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7 ’ f g
Fig. 4. Effect of slot width (increases in direction of the arrows) on the
dispersion characteristic of inductive and capacitive modes.

TABLE III
THE EFFECT OF INCREASING THE SLOT WIDTH ON THE SQUARES OF
THE PROPAGATION CONSTANTS. PARAMETERS AS IN TABLE I

modes o
slotwidth 1 2 3 4 5 6 7 8 9 10

0.4 mm +0.430 -0.598 -2.797 -3.110 -3.567 -4.030 -6.084 -6.440 -7.466 -10.281

1.0 mm +0.360 -0.726 -2.801 -3.18a -3.562 -4.314 -6.067 -6.560 -7.920 -10.237

modes
slotwidth 11 12 13 14 15 16 17 18 19 20

0.4 mm -10.645| -12.211} -12.932| -12,996] ~13.595| -15.450| -15.689| -16.156{ -16,907f -19,645
1.0 mm -10.9761 -12,221| -12.918| -13.103| -13.869| -15,377| -15.725] -16.068} -17.419| -19.,477
1.6 1.4

-
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Fig. 5. Dispersion characteristics of the first two modes in a bilateral finline for slot widths (a) of 0.15 mm and (b) of 0.5 mm.
X, O results taken from [17], this method, parameters: ¢ =2b = 3.556 mm, substrate thickness 0.125 mm, ¢, = 3.0.
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Fig. 6. Effective dielectric constant of a unilateral finline versus slot width w=2-(s, ~ 5,). X, O results taken from [5],
—— this method, parameters: @ = 2b = 3.556 mm, substrate thickness 0.125 mm, ¢, = 2.2.

of seven and nine nearly give the same propagation con-
stants.

The accuracy of the corresponding field distributions has
been checked by calculating the mode-coupling coefficients
for the first 10 modes of the same finline. Here, the
coupling coefficient between the ith and the jth modes is
defined by

C,= f( S)(e, X h¥) dS (15)

with e; (h;) the transverse electric- (magnetic- ) field vector
of the ith (jth) modes and § the finline cross section. The
exact C; are given by [1]

C,;=D3, (16)
where 8, means Kronecker delta. For normalized modes,
D;=1 for propagating modes and D =+ j for either
inductive or capacitive evanescent modes.

The calculations have been performed by using a 100-
term expansion for each electric- and magnetic-field com-
ponent. The results from Table II show that C,, is indeed
negligibly small for i # j. It can also be observed that some
of the modes behave inductively, others capacitively below
cutoff. An interesting difference between them is the de-
pendence of their propagation constants with respect to
slot width. As has been displayed in Fig. 4, the propagation
constants squared decrease versus slot width for inductive
but increase for capacitive modes. This is confirmed by the
results in Table III comparing the squared propagation
constants of the first 20 modes of a bilateral finline for two
different slot widths. An important consequence of this
behavior 1s the degeneracy between inductive and capaci-
tive modes which occurs at many combinations of the
parameters slot width and frequency. Care should be taken
when dealing with degenerate modes in particular in the
analysis of discontinuities, because these modes are no
longer orthogonal [1].

The dispersion characteristics of the first two modes in a
bilateral finline are shown in Fig. 5 for two different slot

widths. The agreement with results taken from [17] is
excellent. The same holds for the plots of the effective
dielectric constant versus slot width (Fig. 6). The results to
be compared with have now been taken from [5].

V. CONCLUSIONS

It has been shown that the physical reason for any
coupling between the LSE and LSM parts of the hybrid
field in any generalized planar guiding structure is the
restriction imposed by the edge condition. This statement
also holds if the metal strips show finite thickness. Because
the edge condition can ‘be fulfilled as the final step in the
analysis, both partial fields can be treated separately up to
this point.

The advantages of this type of decoupling have been
demonstrated by applying the singular integral equation to
the analysis of finlines. With an order of the characteristic
matrix of just 7, the first 30 modes can be calculated with
sufficient accuracy in a few seconds. This makes it possible
to perform the analysis of discontinuities with reasonable
effort.
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