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Space-Domain Decoupling of LSE and LSM
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Structures

ABBAS SAYED OMAR AND KLAUS SCHUNEMANN. MEMBER IEEE

Abstract —LSE and LSM fields in generalized planar guiding structures

are shown to be coupled only by means of the edge condition, which can be

fulfilled as the final step in the analysis. This is utilized by applying the

singular integraf equation technique to firdines. Modes np to the thirtieth

are thus easily and quickfy computed.

I. INTRODUCTION

T HE HYBRID NATURE of the electromagnetic field

in generalized planar guiding structures (which consist

of an arbitrary number of dielectric layers with metal strips

being arbitrarily deposited at the interfaces) is the main

source of complexity in the analysis. Knowing the physical

reasons for the coupling between the two parts of the field

would allow one to treat these fields independently, up to

the point where the coupling enters the analysis. In this

respect, both TE and TM fields must be coupled from the

beginning because the air–dielectric or the dielectric–

dielectric interface conditions cannot be satisfied other-

wise. On the other hartd, these interface conditions are

independently fulfilled by the LSE and LSM field parts [1],

whereas the fields are just coupled in order to satisfy the

edge condition. This will be derived in the following. (The

edge condition is, e.g., defined in [2].) The LSE and LSM

field parts can then independently be treated in the analy-

sis up to the point at which the edge condition has to be

satisfied. This can, however, be done in a final step, thus

greatly simplifying the analysis.

This kind of decoupling between the LSE and LSM field

parts in some planar guiding structures has already been

utilized in the spectral domain, where the spectral represen-

tations of the field components are related by algebraic

equations [3]–[9]. It has been shown to be very effective

there in reducing the complexity of the analysis. In [3]–[6],

the spectral representations of the hybrid field have been

decoupled into LSE and LSM parts and treated indepen-

dently by using the equivalent transmission-hne concept.

They have been coupled in the final step of the analysis

without giving a special reason. In [7]–[9], LSE and LSM

Manuscript recewed April 26, 1984. Tlm work was supported by
Deutsche Forschungsgemeinschaft.

The authors are with the Techrusche Universitat Hamburg–Harburg,
Arbeltsbereich Hochfrequenztechnik, Postfach 90 14 03, D-21OO Ham-

burg 90, West Germany.

decoupling has also been utilized. Both field parts have

independently been treated by the Wiener–Hopf tech-

nique. Coupling has been introduced in the final step in

order to eliminate singularities which occurred in the course

of the back-transformation of the LSE and LSM fields into

the hybrid field. A physical reason for the coupling has not

been given.

A possible decoupling between LSE and LSM fields in

the space domain is much more important than in the

spectral domain because the field components are now

related by integral instead of algebraic equations. Dealing

with uncoupled integral equations facilitates the analysis to

a great extent, in particular if structures with more than

one dielectric layer are to be treated.

II. BASIC FORMULATION

The generalized planar guiding structure sketched in Fig.

1 shows an arbitrary number of air-dielectric and/or

dielectric-dielectric interfaces which are in parallel to the

direction of wave propagation (taken as z-direction here).

Infinitely thin metal strips are assumed to be deposited at

the interface in the (x = O)-plane, although the analysis can

easily be extended to the case that there are strips at more

than one interface. LSE and LSM fields independently

satisfy all the interface conditions at the strip-free inter-

faces [1]. Hence, it suffices to consider just the interface

conditions in the (x = O)-plane.

A. LSE Field

For perfectly conducting strips, the LSE field in regions

1 and 2 can be expressed in terms of scalar potentials +:

and +! satisfying the Helmholtz equation

Here, wave propagation has been described by exp ( – j~z),
k: = O=p ~c~, and K, k the dielectric constant of region i.

The tangential field components at the interface are calcu-

lated from
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Fig. 1. Generalized planar guiding structure.

The interface conditions read

E(I)= E;)=EY,
Y

@)= @ = E=

-x

H:) _ j7;2) = Jr, H$2) – H?) E J= , atx=O.

(3)

EY, E= are the tangential electric-field components, and

JY, ~ are surface current density components at x = O.

It is proven from (2) and (3) that

dEy &y
E=-—

dy’ ‘z-~”
(4)

Hence, the LSE field is completely characterized by the

y-components of the tangential electric field and of the

surface current density at the interface. Moreover, it can

also be shown from (2) and (3) that both the tangential

electric field Et = EYn y + Ezn, and the surface current

density ~ = JYny + J=nz are solenoidal, i.e.,

VtEt = O, vt~=o. (5)

V, - ( d/dy)nY + ( ~/dz)n= means two-dimensional del-
operator in the y – z-plane, n ~ and n, are unit vectors in y-

and z-direction, respectively.

B. LSM Field

The LSM field is similarly expressed by scalar potentials

$; and +; satisfying’ (1) with superscript ‘h’ replaced by

‘ e‘. The tangential field components can be derived from

with interface conditions given by (3). It can now be

derived from (6) and (3) that

dEZ
EY-—

dy ‘
J,-%

dy
(7)

Y

i
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Fig. 2. Coordinates of (a) tie 0° edge and (b) the 90° edge.

so that the L!3M field is completely characterized by the

z-components of Et and ~. Furthermore, both Et and J,
show zero curll

VtXEt=O, vtx~=o. (8)

C. Edge Condition

It will now be shown that the edge condition [2] estab-

lishes a coupling between the LSE and LSM field parts. It

states that both Ev and JZ are singular at the edges of the

metal strips, whereas EZ and JY behave regularly, viz., they

are vanishing here. For the LSE field, the z-components

E: and J$ are both proportional to the y-derivative of the

y-components Ef and J; (4). E: cannot behave regularly

at the edges if E~ is singular here, because the derivative of

a function shc}ws a :stronger singularity than the function

itself. A similar conclusion can be drawn for J; of the LSM

field. The edge condition can only be satisfied by a linear

combination of LSE and LSM fields according to

The individual components in (9) must show the following

behavior at the edges:

1) E: and J: are regular with regular y-derivative, and

2) E; and J: are regular with singular y-derivative.

Hence, it can “be concluded that the LSE field is responsi-

ble for the eclge singularity of J,, while the LSM field

creates that of EY.

The validity of this discussion is not restricted to the

idealized case of infinitely thin strips. It can be applied

equally when the finite thickness is taken into account

because both the 0° edge and the 90° edge have a similar

effect on the field components with respect to singularity,

in both cases, EY and J= behave singularly, whereas EZ

and JY are regular. Referring to Fig. 2, one has at x = x; for

y+s

(Ey, J=) - 1~-Sl-1”2

)

0° edge
(E=,, JY) ‘ ly-Sl+l/2

(Ey, J=) -ly-s l-1/3

(~z., Jy) - Iy -s1+2/3
}

90° edge. (lo)

A closely related problem is that of an E-plane step in a
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Fig. 3. Generalized unilateral finline.

rectangular waveguide which cannot support a purely TE

field if it is excited by the dominant mode. The only reason

for this is that the edge condition would then be violated.

III. APPLICATION TO SINGULAR INTEGRAL

EQUATION TECHNIQUE

One of the most powerful space-domain methods is the

singular integral equation technique which has been used

in [10] –[12] for solving a variety of waveguide problems. It

has also been applied to the analysis of microstrip lines

[13], [14]. Using this technique for the analysis of gener-

alized planar structures has the same advantages as the

well-known and widely used Galerkin method in the spec-

tral domain— the small order of the matrix characterizing

the problem. For the dominant and the first few high-order

modes of any planar guiding structure, the Galerkin method

in spectral domain is superior over all other methods

because the order of the characteristic matrix may be as

low as four (corresponding to two basis functions for each

component of either strip current or slot electric field) for

still excellent accuracy. For higher order modes up to the

tenth or twentieth, which are needed in the analysis of

discontinuities, two basis functions are not sufficient to

approximate the real field, so that the order of the matrix.,
must be increased considerably. In this case, the singular

integral equation technique becomes preferable because a

matrix of order seven is quite sufficient for achieving

accurate results up to the thirtieth mode [15].

Utilizing the decoupling between LSE and LSM fields

derived above, the singular integral equation technique
leads to two uncoupled singular integral equations which

can be solved by standard methods [11]. In a subsequent

final step, the coupling is then taken into account in order

to fulfill the edge condition. The procedure is illustrated

here by analyzing the generalized unilateral finline struc-

ture sketched in Fig. 3. Four functions are defined at the

interface x = O by

c:”. . C; are constants, nX means unit vector in the

x-direction.

Comparing (11) with (5) and (8), it can be seen that f:
and f; represent the LSM part of the field, while f~ and

~~ represent its LSE part. For perfectly conducting walls at

Y = O and Y = b, these functions can be expanded into
Fourier series with two sets of unknown coefficients

f;= : @os(w/b),
~=1

f;= ~ P~A~sin(nry/b)
~=1

f: =A~ + E AlcOS(nmy/b),
~=1

f;= Qo~~: + ii QnA:sin(nw/b). (12)
~=1

In (12), -4~(1’H) and A~(QH) are proportional to the Four-
ier expansion coefficients of the LSM and LSE fields

(Green’s functions), respectively.

The construction of the four functions according to (11)

guarantees that 1) P. and Q. have unit asymptotic limits

for large n, which is approached exponentially, and that 2)

ff”” “f; show a (Iy – sl-1/2)-singularity at the edges,

which is the proper type of singularity for a description by

the singular integral equation technique.

The boundary conditions to be imposed on these func-

tions read

Following standard procedures [12], the field expansion

coefficients A ~ and A: can be expressed in terms of two

infinite series g’(y) and g~( y ) which are defined by

ge(y) = ~ (1– P.) A~sin(nny/b)
fl=l

gh(y)= ~ (l– Qn)A~sin(nmy/b). (14)
~=1

The coefficients in (14) obviously vanish asymptotically, so

that the infinite sums can be truncated behind the first few

terms. Thus, the order of the characteristic matrix will be

low.

As the final step, the two field parts have to be coupled.

One recognizes from (11) that the vanisfing of both dff/dy
and f~ on the fins (see (13)) guarantees only that EY and

E= satisfy Laplace’s equation there. Hence, one of the two

components of Et must be set to zero at the edges [16] in

order to satisfy the boundary condition Et = O on the fins.

This establishes a first coupling relation between the LSE

and the LSM field. One can conclude in a similar way that

the vanishing of f; and df~/dy guarantees only that the
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i
TABLE I

THE PROPAGATION CONSTANTS OF THE FIRST 20 MODES IN A BILATERAL FINLINE. PARAMETERS: a = 2 b = 3.556 mm, SUBSTRATE

THICKNESS = 0.254 mm, $1 = 0.0, S2 = 0.2 mm, t,= 2.22, AND ~== 30 GHz.

mode no.

1 2 3 4 5 6 7 8 9 10
matri
order

5x5 0.665 -j O.769 -jl.672 -jl.763 -jl .889 -j2.004 -j2.4167 -j2.536 -j2.731 -j3.206

7X7 0.658 -j O.772 -jl.672 -jl.763 -jl.889 -j2.007 -j2.4157 -j2.537 -j2.732 -j3.206

9x9 0.656 -j O.773 -jl.672 -jl.763 -jl.889 -j2.008 -j2,467 -j2.538 -j2,732 -j3.206

mode no.

11 12 13 14 15 16 17 18 19 20

order
—

5x5 -j3.262 -j3.494 -j3.596 -j3.605 -j3.687 -j3.931 -j3.9151 -j4.019 -j4.114 -j4.432

7x7 -j3.262 -j3.494 -j3.596 -j3.605 -j3.687 -j3.931 -j3.9161 -j4.019 -j4.112 -j4.432

9x9 -j3.262 -j3.494 -j3.596 -j3.605 -j3.687 -j3.931 -j3.9161 “-j4.019 -j4.112 -j4.432

TABLE II
MODE COUPLING COEFFICIENTS FOR THE FIRST 10 MODES.

PARAMF,TERSAS IN TABLE I
——

i

1 -3+1.0 -.i2.6°10 -J8.2.1O
-4

-.jl.7.lo-3
-2

-.{3.6°10-3
-3+j4.5. lo + .~ -.j2.4.10-3 -.j2.7.10-3

-2
+.il. l.lo

2 -j2.2.lo-3 +jl. o -j2.9-10-4 -j6.0.10-4
-2

+jz, z.lo .jl.3.lo-3 +J.36-10-’3 -j8,4.10-4 -j9.8.lo-4
-3

+j4.4. lo

3 -J3.1.10-4 -J1.3°10-4 +jl. o -j8,1010-5
-2

+jl.4.lo -jl,7.10-&
-4

+J9.6.1o -jl.l.lo-4 -jl.3.10-4
-d

+j9.1. lo

4 -J6.3.10-4 -j2.6.10-4 -j7.8.lo-5
-2

+jl. o +J4 .2.10 -j3.5.10-4 -J3.5.1O-4 -j2.3.10-4 -J2.7.10-4
-3

+jl.7. lo

5
-2 -2 -2

+J1.5.1O
-2

+J2.8.1O +J1.2.1o +j3.9. lo -jl. o .ja.7.lo-2
-6

+J3.3.1O -jl. o.lo-* -J8.5.10-3
-6

+j7 .6.10

6 -jl.2.lo-3 -J4.8,10-4 -J4.6.10-5 -j3.0.10-4 -$9, I.1O-*
-3

+jl. o +.15.5.10, -j4.2.10-4 -j4.9.lo-4
-3

+j3.9.lo

7
-3 -3 -4 -3

+jz.l. lo
-7

+jl.l. lo +j6.4.10 +jl,3.lo
-3

+j3.9. lo +j4,4.lo -.11,0 -jl. a.lo-z -J5.4.10-3
-6

+j5.9. lo

8 -J6. O.10-4 -j2.5-10-4 -j7.5.lo-5 -jl.6010-4 -j7.4.lo-3 -J3,3.10-4 ..I1.7.1O-2 +jl. o -j2.5+10-4
-3

+j3.5. lo

9 -j6.6. io-4 -j2.8-10-4 -j8,3.10-5 -jl.7.lo-4 -j5,8.10-3 -j3,6.10-4 -J4,8.10-3 -j2.4.10-4
-3

+jl. o +j5 .2.10

10
-3 -3 -4 -4

+jz.l. lo +jl. o.lo
-7 -3

+j4 .6.10 +j9.1.lo +j8.8.lo
-6

+j2.4010
-3 -3

+J2.8.1o +j2.8. lo +j4.3.lo -jl. o

surf ace current density components satisfy Laplace’s equa-

tion in the slot. In order to have J, = O here, one of its two

components must be set to zero at the edges. Thus, a

second coupling relation between the partial fields is

established.

It should be noted that these additional coupling rela-

tions do not over-determine the problem, because a suffi-

cient number of unknown constants has been generated

until now. The number of homogeneous linear equations

always equals the number of unknowns. Propagation con-

stants and fielcl distributions of the various modes have to

be calculated from this system.

IV. NUMERICAL RESULTS

To illustrate the fast convergence in the truncation pro-

cedure, the propagation constants of the first 20 modes of
a bilateral finline have been calculated for matrix orders of
five, seven, and nine. (This corresponds to truncating the

infinite series’ in (14) behind the second, third, and fourth

terms, respectively.) The results in Table I show that orders
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Fig. 4. Effect of slot width (increases in direction of the arrows) on the

dispersion characteristic of inductive and capacitive modes.

TABLE III

THE EFFECT OF INCREASING THE SLOT WIDTH ON THE SQUARSS OF

THE PROPAGATION CONSTANTS. PARAMETERS AS IN TABLE I

s,.,=’ ‘ 2 3 4 5 ‘ 7 8 g 10

0.4 mm +0.430 -0.598 -2.797 -3.110 -3.567 -4.030 -6.084 -6. A40 -7.466 -10.281

1.0 mm +0.360 -0.726 -2.801 -3.184 -3.562 -4.314 -6.067 -6.560 .7.920 -10.237

S,oks ‘1 12 13 14 1’ ‘6 17 18 1’ 20

0.4 mm -10.645 -12.211 -12.932 -12.996 -13.595 -15.450 -i5.689 -16.156 -16.907 -19.645

1.0 mm -10.976 -12.221 -12.918 -13.103 -13.869 -15.377 -15.725 -16.068 -17.419 -19.477
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Fig. 5. Dispersion characteristics of the first two modes in a bilateral firdine for slot widths (a) of 0.15 mm and (b) of 0.5 mm.

X, o results taken from [17], — this method, parameters: a = 2 b = 3.556 mm, substrate thickness 0.125 mm, c,= 3.0.
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of seven and nine nearly give the same propagation con-

stants.

The accuracy of the corresponding field distributions has

been checked by calculating the mode-coupling coefficients

for the first 10 modes of the same finline. Here, the

coupling coefficient between the i th and the jth modes is

defined by

C,j = ~ (e, x hj*) dS (15)
(s)

with ei (h j) the transverse electric- (magnetic- ) field vector

of the i th (j th) modes and S the finline cross section. The

exact C,j are given by [1]

Cij = D,8,1 (16)

where S*J means Kronecker delta. For normalized modes,

Di = 1 for propagating modes and D,= + j for either

inductive or capacitive evanescent modes.

The calculations have been performed by using a 100-

term expansion for each electric- and magnetic-field com-

ponent. The results from Table II show that C,, is indeed

negligibly small for i # j. It can also be observed that some

of the modes behave inductively, others capacitively below

cutoff. An interesting difference between them is the de-

pendence of their propagation constants with respect to

slot width. As has been displayed in Fig. 4, the propagation

constants squared decrease versus slot width for inductive

but increase for capacitive modes. This is confirmed by the

results in Table III comparing the squared propagation

constants of the first 20 modes of a bilateral finline for two

different slot widths. An important consequence of thi-s

behavior is the degeneracy between inductive and capaci-

tive modes which occurs at many combinations of the

parameters slot width and frequency. Care should be taken

when dealing with degenerate modes in particular in the

analysis of discontinuities, because these modes are no

longer orthogonal [1].

The dispersion characteristics of the first two modes in a

bilateral finline are shown in Fig. 5 for two different slot

widths. The agreement with results taken from [17] is

excellent. The same holds for the plots of the’ effective

dielectric constant versus slot width (Fig. 6). The results to

be compared with have now been taken from [5].

V. CONCLUSIONS

It has been shown that the physical reason for any

coupling between the LSE and LSM parts of the hybrid

field in any genera~lized planar guiding structure is the

restriction imposed by the edge condition. This statement

also holds if tlhe metal strips show finite thickness. Because

the edge condition can be fulfilled as the final step in the

analysis, both partial fields can be treated separately up to

this point.

The advantages of this type of decoupling have been

demonstrated by applying the singular integral equation to

the analysis of finlines. With an order of the characteristic

matrix of just 7, the first 30 modes can be calculated with

sufficient accuracy in a few seconds. This makes it possible

to perform the analysis of discontinuities with reasonable

effort.
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